
PHOTOPLETHYSMOGRAPHY 1

Wearable Photoplethysmography Devices
Peter H. Charlton and Vaidotas Marozas

Affiliations

P. H. Charlton is with: (i) the Department of Public Health and Primary Care, University of Cambridge,
Cambridge, CB1 8RN, UK; and (ii) the Research Centre for Biomedical Engineering, City, University of London,
London, EC1V 0HB, UK. e-mail: pc657@medschl.cam.ac.uk. ORCiD: https://orcid.org/0000-0003-3836-8655

V. Marozas is with: (i) the Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania;
and (ii) the Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Kaunas, Lithuania.
e-mail: vaidotas.marozas@ktu.lt. ORCiD: https://orcid.org/0000-0002-6879-5845

NON-PRINT ITEMS

Abstract

The wearables market has expanded greatly in recent years, with wrist-worn devices now widely used.
Smart wearables provide opportunity to monitor health and fitness in daily life. Wearables such as fitness
bands and smartwatches routinely monitor the photoplethysmogram (PPG) signal, an optical measure of the
arterial pulse wave which is strongly influenced by the heart and blood vessels. This Chapter presents a
comprehensive overview of the state-of-the-art of wearable photoplethysmography devices. It summarises:
(i) key considerations in the design of wearable PPG devices; (ii) the physiological parameters that can be
estimated from wearable PPG signals; (iii) commercially available devices; and (iv) potential applications in
health and fitness monitoring.
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1. INTRODUCTION

The growing use of smart wearables which measure the photoplethysmogram (PPG) provides a wealth of
opportunities to monitor health and fitness in daily life. Wearables are becoming more widely used, ranging from
fitness bands to smart rings. It has been estimated that by 2022 there will be over 1 billion wearables globally [1],
and annual spending on wearables will exceed $80 billion [2]. The growth in wearables is expected to be increased
further by their potential for remote monitoring during the COVID-19 pandemic [3]–[5]. Initially, most wearables
were used for electrocardiogram (ECG) or activity monitoring, whereas nowadays many smart wearables include a
PPG sensor. Early examples of PPG-based wearables include the Mio Alpha (Mio Global, Canada) and Schosche
myRhyhm (Schosche Industries, CA, USA) devices [6], both of which appeared in early 2013.

The PPG signal is an optical measure of arterial blood volume. In wearable devices it is typically measured
by shining a light on to the skin, and measuring the amount of light reflected back from the skin. The resulting
signal is dominated by a pulse wave due to the change in blood volume with each heartbeat (see Fig. 1). Many
consumer devices use the PPG for heart rate (HR) monitoring. As well as the heart, the PPG is also influenced by
the vascular, respiratory and autonomic nervous systems. Consequently, a range of physiological parameters can be
estimated from the PPG, which in the future could facilitate extensive, unobtrusive health monitoring.

1.1. Overview
This chapter provides a comprehensive overview of the state-of-the-art of wearable PPG-based devices, and

highlights areas for future research to realise their full potential. It covers the following aspects of wearable
photoplethysmography devices:

Hardware configurations: Wearable photopethysmography devices are now widely available in a variety of hard-
ware configurations. Section II summarises key hardware considerations: measurement site, sensor design, and
the optional acquisition of simultaneous signals. When designing wearable devices it is important to consider the
hardware configuration in the context of the device’s intended application, as different configurations are most
suitable for different applications.

Physiological parameters: Several physiological parameters can be estimated from wearable PPG signals, although
only a minority of these are currently provided by wearables. Section III summarises these parameters, describing
the techniques used to estimate them, and highlighting pressing areas for future work in order to refine them for
use in wearables in daily life.

Commercially available devices: A wide range of PPG-based wearables are now commercially available. Section
IV provides an overview of the devices, focusing on their form factors, functionality.

Applications: Wearable PPG devices could potentially be used for applications in health and fitness monitoring.
Section V presents several applications, including the background to each application, the PPG-based approaches
used for each application, and areas for future work.

The chapter concludes that PPG-based wearables hold great promise for monitoring health and fitness in daily life,
with several potential applications. However, further work is required to ensure that the full potential of wearables
is realised, as outlined in Section VI.

1.2. Recommended reading
This Chapter builds on a recent review of wearable photoplethysmography for cardiovascular monitoring [7],

which provides complementary information on: the origins of the PPG signal, PPG signal processing techniques,
PPG-derived parameters, clinical applications, and an in-depth discussion of future research directions.
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Fig. 1. The PPG signal: An example of a PPG signal acquired in daily life, with red circles indicating individual pulse waves
corresponding to heart beats. Signal acquired at the finger, and measured in arbitrary units (au).

Source: [8] under CC BY 4.0. Data from the PPG Diary Pilot Study 1 dataset [9].

2. HARDWARE CONFIGURATIONS FOR WEARABLE PHOTOPLETHYSMOGRAPHY DEVICES

Wearable photopethysmography devices are now widely available in a variety of hardware configurations. This
Section outlines important factors in hardware design. These factors should be considered alongside the intended
application, as the hardware configuration can influence the utility of the acquired PPG signal for estimating
physiological parameters. Herein, wearables are defined as devices which attach to (and can be detached from) the
body, acquire physiological measurements, and are physically disconnected from the external environment [10].

2.1. Measurement site

Wearable PPG devices can acquire PPG signals at a range of anatomical sites. The choice of PPG measurement
site can influence both the utility of the acquired PPG signals, and the user acceptability of the wearable device.
The shape of PPG pulse waves differs between sites [11], [12], as shown in Fig. 2 (a). This may affect the utility
of the pulse wave for physiological parameter estimation using pulse wave analysis. The pulse arrival time (PAT,
the time delay between ventricular contraction and PPG pulse wave arrival) is greater at sites further from the heart
such as fingers or toes [11], which may influence the utility of PAT measurements. Finally, the form of devices
naturally differs between measurement sites, ranging from wristbands to armbands, earbuds to glasses, and therefore
the choice of site may influence user acceptability. Fig. 3 shows several examples of PPG-based wearables worn
as a headband, armband, and wrist watches.
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Fig. 2. The influence of hardware configuration on PPG pulse wave measurements: Examples of the influence of hardware
configuration on PPG pulse wave shape. (a) shows a comparison of finger and ear pulse waves; (b) shows a comparison of pulse
waves acquired using laboratory equipment and a clinical monitor. Signals were recorded simultaneously from a young healthy subject
(and subsequently time-aligned by pulse onset).

Source: [13] under CC BY 4.0. Data from the Vortal dataset [14].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Fig. 3. Wearable photoplethysmography devices: Examples of wearables which measure the photoplethysmogram (PPG) signal,
shown from above and the sensor side (below).

Source: [15] under CC BY 4.0.

The following measurement sites are suitable for wearable devices:
2.1.1. Finger: Smart rings are now commercially available which acquire PPG signals at the finger [16]. The

PPG sensor can be placed on the underside of the finger in order to obtain a reflectance PPG signal from as close
as possible to the main arteries in the finger. Pulse oximeters typically acquire transmission PPG signals at the
finger, and much research has been conducted using PPG signals acquired at the finger [17], particularly as the
PPG signals in the widely used MIMIC Database [18] are mostly measured at the finger.

2.1.2. Wrist: Fitness bands and smartwatches acquire PPG signals at the wrist. The PPG sensor is typically housed
within the same unit as the display, and typically acquires reflectance signals at the upper wrist. The major arteries
of the wrist are located on the lower wrist, centimetres from the typical measurement site, indicating that the PPG
signal at the upper wrist likely originates from the microvasculature rather than the major arteries. Indeed, PPG
signals acquired close to the major arteries of the wrist have been found to have much higher signal-to-noise ratios
than those acquired at the upper wrist [19]. the shape and amplitude of PPG pulse waves has been observed to
differ between the finger and wrist [20]. Nonetheless, wrist PPG devices mounted on the upper wrist can provide
accurate HR measurements [21].

2.1.3. Arm: Armbands can be used to acquire reflectance PPG signals at the upper arm [22], [23], although this
approach is not yet widely used in consumer devices. The arm may be less susceptible to motion artifact than more
peripheral sites such as the finger or wrist [24].

2.1.4. Ear: The ear has the potential advantage of being less prone to motion artifact [25]. Wearable PPG devices
at the ear can take several forms. Firstly, earring sensors can be used to obtain PPG signals from the earlobe [25].
Secondly, sensors have been applied to the skin immediately behind the ear using a wrap around ‘ear cup’ system
[26]. Thirdly, earbud sensors can be used to obtain PPG signals at the inner ear [27], [28], with the potential
advantages that this site is less prone to vasoconstriction that peripheral sites [29], and that noise can be removed
through simultaneous acquisition of PPGs using an earbud in each ear [27].

2.1.5. Chest: Chest-worn devices, potentially attached via a chestband or adhesive patch, can acquire PPG signals
[30]. The chest is an ideal location for acquiring electrocardiogram and seismocardiogram signals, indicative of

https://creativecommons.org/licenses/by/4.0/
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heart activity.
2.1.6. Face: Smart glasses have been designed to acquire PPG signals at either the nose bridge [31] or the temple

[32]. It may be beneficial to acquire PPG signals at the temple during exercise as HRs derived from PPG signals
at the temple can be more accurate than those acquired at the wrist [33].

2.2. Sensor design

There are several options to consider when designing a PPG sensor for a wearable device, all of which can
influence the utility of the measured PPG signal. This is demonstrated in Fig. 2 (b), which shows PPG pulse waves
acquired simultaneously from adjacent fingers on the same hand using two different devices: the pulse wave shape
differs, indicating that the hardware configuration could influence parameters extracted from the pulse wave shape.
These hardware options are now considered in turn.

2.2.1. Transmission and reflectance photoplethysmography: Wearable PPG devices use either transmission or
reflectance photoplethysmography. In transmission photoplethysmography light is shone onto an extremity (e.g.
finger, toe or earlobe), and the amount of light transmitted through the extremity is measured using a photodetector
on the opposite side. Consequently, transmission photoplethysmography can only be used at limited anatomical
sites where a photodetector can be placed opposite the light emitting diode (LED), such as the finger, toe or
earlobe. In reflectance photoplethysmography light is shone onto the skin, and the amount of light reflected back
is measured using a photodetector positioned close to the emitting LED. Reflectance photoplethysmography can be
used at additional sites such as the wrist, arm or chest. It has been observed that reflectance photoplethysmography
provides a higher signal-to-noise ratio at the fingertip than transmission photoplethysmography, indicating that the
reflectance mode should be used in wearables [34].

Further details of transmission and reflectance photoplethysmography are provided elsewhere in this book: see
Chapter 2 ”Light Tissue Interaction in PPG” and Chapter 3 ”PPG Technology” for details.

2.2.2. PPG wavelength: The wavelength of light used to acquire signals affects the resulting PPG measurement
[35]. Wearable devices typically use infrared (longest wavelength), red, or green (shortest wavelength) light. The
longer the wavelength of transmitted light, the greater the depth to which the light penetrates into the body [36], so
green light penetrates less deeply than red and infrared light [37]. Consequently, red or infrared light is typically
used for transmission photoplethysmography. In contrast, green light has been found to provide a higher signal-
to-noise ratio than red or infrared light in reflectance photoplethysmography [34], [38], and to be more robust to
changes in temperature [39]. Indeed, Apple Watches equipped with LEDs of multiple wavelengths (green, red and
infrared) can switch between using infrared light for HR monitoring at rest, and green light during exercise [40].
The wavelength of light can also influence the shape of the acquired PPG waveform (see Fig. 1 of [41]). The
wavelength of light has been investigated as a factor in ensuring that PPG sensors perform well across different
skin types [38]. Reassuringly, research to date has found the performance of certain PPG-based wearables not to
be affected by skin type [42], [43].

2.2.3. Multiple PPG signals: Recently, PPG sensors have been designed to acquire multiple PPG signals at a single
site in order to reduce the influence of noise or provide additional physiological information. Multiple PPG signals
acquired at a single site can be used to assess signal quality by assessing the level of similarity between the signals.
Multiple PPG signals can also be used for noise reduction by: identifying the highest quality signal and discarding
the others; extracting a composite signal as a sum of the individual signals weighted according to their quality [19];
or using multichannel decomposition to extract significant signal components by exploiting information from all of
the signals [44]. Multiple PPG signals of different wavelengths can be used to obtain PPG signals corresponding
to different levels of the vasculature, such as the capillaries, arterioles and arteries, which can be used to estimate
parameters such as the arteriolar pulse transit time (PTT) [41]. In addition, it has been proposed that an infrared
PPG signal can serve as a reference motion signal in order to reduce the influence of tissue deformation on green
PPG signals [45].

2.2.4. Sampling frequency: Wearable devices typically sample the PPG at between 50 and 100 Hz [46], [47].
However, studies have shown that HR can be estimated from PPG signals sampled at 9 Hz [48], pulse rate variability
can be accurately assessed from PPG signals sampled at 25 Hz [49], respiratory rate can be accurately estimated
using a sampling frequency of 16-18 Hz [14], [48], and generally PPG features can be accurately measured at
sampling frequencies of at least 60 Hz [38]. Therefore, a relatively low sampling frequency may be acceptable for
many applications.
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2.2.5. PPG bandwidth: The bandwidth of PPG signals affects their potential utility for parameter estimation. It
is beneficial to strongly filter PPG signals prior to HR estimation, using a narrow bandwidth corresponding to
the range of plausible HRs such as 0.4-2.25 Hz [50]. This narrow range ensures that most irrelevant content is
eliminated, such as low frequency variations due to respiration, and high frequency noise. Having a narrow range
can assist with HR and SpO2 estimation [51]. However, the frequency content of PPG signals outside of this narrow
range is required for estimating other physiological parameters. A higher low-pass cut-off is required to preserve
high frequency content so that fiducial points on PPG pulse waves can be accurately identified, which can be set as
low as 5 Hz for detecting pulse troughs for inter-beat-interval calculation [52], but must be much higher (e.g. 20
Hz [53]) to locate fiducial points accurately enough to measure pulse wave features. Similarly, a lower high-pass
cut-off of approximately 0.05 Hz may be required to ensure pulse wave features are faithfully reproduced [54], and
that all respiratory content is preserved [55]. Consequently, wearable devices may need to apply different filters to
the signal for different purposes.

2.2.6. Measurement frequency and battery life: PPG sensors consume substantial power which can reduce the
battery life of wearables [56]. Therefore, rather than continuously monitoring PPG signals, it may be beneficial to
turn on PPG sensors either intermittently, or only during periods of low activity. One approach to maintain PPG
monitoring whilst reducing power consumption is to only activate the PPG sensor during periods of low activity,
since PPG signals are typically of low quality during periods of high activity [8]. This can be achieved by using
an accelerometer, which consumes much less power than a PPG sensor, to measure activity levels. Indeed, some
wearables now adopt this approach [57]. An alternative approach is to turn off the PPG sensor after a high quality
signal segment has been obtained, and to only turn it on again after a certain delay [58]. Such strategies will help
ensure that PPG-based wearables are acceptable to users, without requiring too frequent battery charging.

2.2.7. LED driving schemes and power consumption: A key factor in determining the power consumption of a
PPG sensor is the proportion of time for which the LED is illuminated [59]. Typically, the LED is duty-cycled,
meaning the PPG signal is uniformly sampled by illuminating the LED at a regular sampling frequency [60]. Both
the sampling frequency and the duration of time for which the LED is illuminated when taking each sample are a
compromise between power consumption and signal fidelity (which influences the accuracy of derived parameters
[59]). Alternative approaches have been proposed which use non-uniform sampling to reduce power consumption
[60]. Firstly, compressive sampling can be used to reduce the number of samples per pulse wave and still maintain
accurate analyses by exploiting the sparseness of the PPG pulse wave [61]. Secondly, windowing can be used to
only sample the PPG at points of interest during the pulse wave, such as around the expected time of pulse wave
peaks for inter-beat-interval analysis [60]. The appropriate scheme for driving an LED should be chosen with the
intended analyses in mind.

2.3. Additional signals
Many wearable devices acquire additional signals which can be used with the PPG to provide improved physio-

logical monitoring. Fig. 4 shows four additional signals which are commonly acquired by wearables, and are now
described.

2.3.1. Electrocardiogram: The electrocardiogram (Fig. 4(a)) is a measure of the heart’s electrical activity which
can be measured by smart wearables either continuously or when activated by the user. The ECG can be monitored
continuously between two skin electrodes measuring the potential difference caused by myocardial activity. The
signal-to-noise ratio of the ECG tends to be higher when the separation of the electrodes in relation to the heart
is greater. For instance, the signal-to-noise ratio is greater when the ECG is measured at the chest, or at two arms
(providing a view across the heart), and significantly lower when measured with both electrodes on a single arm
[65]. The ECG can also be acquired intermittently when activated by the user of a device (such as a smartwatch)
which has one electrode constantly in contact with the skin (typically on the underside of the watch), and a second
electrode which the user touches with their opposite hand [66]. An ECG can be recorded for as long as the
user has their opposite hand on the device. The inclusion of ECG technology into PPG-based wearables could
enhance the utility of the PPG-based wearables. For example, if an irregular heart rhythm is detected then the user
could be prompted to record an ECG which could be used to confirm a diagnosis (such as atrial fibrillation). In
addition, intermittent pulse arrival time (PAT) measurements could be obtained from simultaneous ECG and PPG
measurements, which could be used for blood pressure (BP) estimation.

2.3.2. Accelerometry: Accelerometers measure static and dynamic acceleration. Due to their power efficiency and
low price they are already used in the majority of wearables for step counting and recognising some activities (such
as walking). Accelerometry signals (Fig. 4(b)) can also be used to improve parameter estimation from the PPG.
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(b) Accelerometry
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Fig. 4. Additional signals acquired by smart wearables: Smart wearables commonly acquire additional signals simultaneously
with the PPG. This figure shows examples of: (a) an electrocardiogram (ECG) signal, a measure of the heart’s electrical activity
dominated by heart beats approximately once per second; (b) an accelerometry signal indicating the level of movement, and used for
step counting; (c) a seismocardiogram signal, a measure of surface vibrations which is dominated by heart activity when acquired at
the chest; (d) a gyroscope signal indicating rotation of the device.

Source: [13] under CC BY 4.0. All signals from PhysioNet, reproduced under ODC-BY 1.0. [62]. (a) and (c) are from the CEBS
database [63]; (b) and (d) are from the Wrist PPG During Exercise database [64].

Firstly, accelerometry signals can be used to reduce noise in PPG signals by cancelling noise which is common to
both accelerometry and PPG signals [67]. Secondly, accelerometry can be used to identify periods when activity
levels are too high to estimate parameters reliably from PPG signals. Thirdly, accelerometry could be used to
contextualise PPG-derived parameters according to the activity in which they were recorded, as accelerometry can
be used to infer body position (e.g. lying or standing), and could be used to identify a wide range of activities of
daily living [68].

2.3.3. Seismocardiography: The seismocardiogram (Fig. 4(c)) is a measure of surface vibrations acquired by an
accelerometer in contact with the skin. It can be particularly informative when measured at the chest, where it is
influenced by heart activity and can be used to identify the times of ventricular ejection [69]. Pulse transit time can
be calculated from the PPG and the seismocardiogram [70], with potential utility for BP monitoring.

2.3.4. Gyroscope: Gyroscopes measure angular velocities around orthogonal axes and thus are suitable for
capturing rotational movements. This feature can be used for adaptive motion artifact cancellation from PPG signals
[71]. In addition, gyrocardiography was recently proposed as a noninvasive monitoring method for the assessment
of cardiac mechanics [72].

It has also been proposed that skin conductance measurements could be used to assess the quality of contact
between the skin and a wearable sensor [73]. Some wearables include a galvanic skin response sensor, which whilst
commonly used to assess emotions, could also be used to assess skin contact, allowing PPG signals acquired during
poor skin contact to be rejected.

https://creativecommons.org/licenses/by/4.0/
https://physionet.org/content/wrist/view-license/1.0.0/
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3. PHYSIOLOGICAL PARAMETERS

Several physiological parameters can be estimated from the PPG, and potentially many of these could be integrated
into wearables. At present, HR is the parameter most commonly estimated from the PPG by wearables. Other
parameters such as BP and respiratory rate (RR) are provided by some wearables, whilst the many of the parameters
proposed in the literature have not yet been incorporated into wearables. Techniques for estimating key physiological
parameters from the PPG are now described.

Further details relating to some of the parameters are provided elsewhere in this book: see primarily Chapter 4
”PPG Signal Analysis and Synthesis”, as well as Chapter 5 ”PPG in Oxygenation”, Chapter 9 ”PPG in Autonomic
Function”, and Chapter 12 ”PPG in Noninvasive Cuff-less BP Monitoring”.

3.1. Heart rate (HR)

The PPG signal is dominated by pulse waves generated by the ejection of blood from the heart during each
heartbeat. Consequently, most PPG-based wearables provide HR measurements. HR is typically estimated from the
PPG in four steps [74]:

1) The PPG signal is band-pass filtered to eliminate frequency content outside of the range of plausible HRs.
2) Motion artifact is removed from the PPG, potentially with the aid of accelerometry signals.
3) An initial HR estimate is obtained by analysing the frequency spectrum of this processed PPG signal.
4) A tracking algorithm is used to track HR estimates over time, helping to eliminate erroneous HRs.

It is relatively straightforward to estimate HR from a high quality PPG signal in the absence of movement. However,
the task is altogether more challenging during exercise which can cause substantial movement artifact in the PPG
[75]. This is demonstrated in Fig. 5: at rest (upper raw) the dominant peak in the PPG spectrum coincides with the
dominant peak in the ECG spectrum, indicating the true HR. HR estimation is more challenging in this example
during walking (middle row): whilst there is a spectral peak corresponding to the true HR at ≈1.4 Hz, care must be
taken not to identify the peaks at lower frequencies as the HR. The interested reader is referred to [76] for further
details of the signal processing techniques used to remove motion artifact from PPG signals and track HRs during
motion.

0 1 2 3 4 5 6

At rest

PPG signal ECG-derived heart beats

0 1 2 3 4 5

PPG spectrum ECG spectrum

0 1 2 3 4 5 6

Walking

0 1 2 3 4 5

0 1 2 3 4 5 6

Time (s)

Running

0 1 2 3 4 5

Frequency (Hz)

Fig. 5. PPG signals and corresponding frequency spectra: PPG signals acquired during rest, walking and exercise, shown
alongside heart beats identified from a simultaneous chest ECG signal, and the corresponding frequency spectra of the PPG and
ECG signals.

Source: [13] under CC BY 4.0. Data from the Vortal dataset [77].

A recent meta-analysis of studies of the performance of wrist-worn devices for HR monitoring found summary
mean absolute errors of 2.15 (95% confidence interval 1.84 to 2.46) bpm during rest, compared to 7.70 (6.32 to
9.07) during treadmill activities [21]. Similar reductions in performance with exercise were reported in [42], and

https://creativecommons.org/licenses/by/4.0/
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differences in performance between brands were reported in [42], [78]. Future assessments of performance will
benefit from recent recommendations for determining the validity of devices [79].

A key parameter derived from HR measurements is the resting HR. Resting HR varies greatly between individuals,
and is a marker of cardiovascular risk [80], [81]. Resting HR varies with age [82], circadian rhythms [83], and
across seasons [81]. In the future wearables could be used to track an individual’s resting HR over time, with
changes in resting HR potentially providing valuable insight into their health [84].

3.2. Identifying an irregular pulse
PPG-based wearables provide opportunity to detect an irregular pulse in daily life. Irregular heart beats are

typically identified from a PPG signal segment as follows [57]:
1) Individual pulse waves corresponding to individual heart beats are identified.
2) Inter-beat-intervals are calculated from consecutive pulse waves, using a fiducial point such as the systolic

peak.
3) The irregularity of inter-beat-intervals is assessed statistically, using a technique such as a Poincaré Plot [85].
4) If the level of irregularity exceeds a threshold then the segment is deemed to contain an irregular pulse.

This can be performed using segments of 1 minute duration [57], although it is possible to use this approach with
shorter segments to identify possible arrhythmias [86]. Irregular heart beats can occur in healthy individuals without
being a cause for concern. However, an irregular pulse can also be caused by arrhythmias such as atrial fibrillation,
in which case it is clinically useful to be aware of it. Consequently, it may be helpful to only raise an alert of
an irregular pulse if it is observed consistently over multiple recordings (as performed by the Apple Watch [57]).
Techniques to identify atrial fibrillation from the PPG have recently been reviewed in [87], [88].

3.3. Arterial oxygen saturation (SpO2)
Arterial blood oxygen saturation is the proportion of haemoglobin in the blood which is carrying oxygen. It is

widely used in clinical practice, and denoted as SpO2 when measured using pulse oximetry. SpO2 can be estimated
from two simultaneous PPG signals of different wavelengths as follows [89]:

1) Identify individual pulse waves in the two PPG signals.
2) Calculate the normalised AC component for each signal (defined as the total intensity of light at the systolic

peak divided by the total intensity at the pulse onset).
3) Calculate the ratio of the normalised AC components for each signal.
4) Estimate SpO2 from an empirical relationship between SpO2 and the ratio of normalised AC components

(see also [90]).
This approach can be aided by the use of a heart-rate tuned comb filter [91]. However, it is difficult to obtain
reliable estimates of SpO2 in the presence of motion artifact. An alternative approach is used in Masimo pulse
oximetry which is designed to be more robust during motion and poor tissue perfusion [92], although it is more
computationally complex [91].

The accurate estimation of SpO2 requires consideration of several aspects of wearable design. Firstly, PPG
wavelengths should be carefully chosen by considering the absorption spectra of oxygenated and deoxygenated
haemoglobin. Secondly, when using reflectance mode photoplethysmography, the spacing between the LED and
photodetector in the PPG sensor should be positioned far enough apart to obtain sufficient signal quality [93]. Thirdly,
it is important that good skin contact is maintained during SpO2 measurements, noting that contact pressure might
be influenced by body position [94]. There is potentially great benefit in monitoring SpO2, particularly to identify
obstructive sleep apnea and as a potential indicator of COVID-19 [95].

3.4. Respiratory rate (RR)
RR, the number of breaths per minute, is used in clinical practice as a marker of illness. Much research has

focused on developing algorithms to estimate RR from the subtle modulations to the PPG signal caused by breathing
[55]. The three main modulations of the PPG due to breathing are baseline wander (BW), amplitude modulation
(AM), and frequency modulation (FM) [77], [96], as illustrated in Fig. 6.
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Fig. 6. The modulations of the PPG signal caused by breathing: baseline modulation (BW), amplitude modulation (AM) and
frequency modulation (FM). Idealised modulations are compared to a signal with no modulation (No mod).

Source: [77] under CC BY 3.0.

Respiratory rate can be estimated from the PPG by (see [77] for further details):
1) Identifying individual pulse waves.
2) Extracting pulse wave features indicative of a respiratory modulation, such as the amplitude of pulse waves

(indicative of AM), or the inter-beat-intervals (FM).
3) Extracting a respiratory signal from the time series of features.
4) Estimating RR from the respiratory signal using either a time- or frequency-domain technique.
5) (optionally) Combining RR estimates derived from different respiratory signals.

There are challenges to estimating RR from wearable PPG signals, such as identifying the most appropriate
respiratory signal(s) for use with the target population [14], only estimating RR when the respiratory modulations
in the PPG are sufficiently strong [97], and avoiding erroneous detection of other low frequency phenomena rather
than breathing [98]. Nonetheless, some wearables do now provide RR (see the Biostrap Evo). It could prove to be
a helpful parameter for the detection and management of COVID-19 [95], [99].

3.5. Blood pressure (BP)
PPG-based wearables would be greatly enhanced if they could assess BP, since it is used for a wide range of

clinical purposes. It may be feasible to assess BP from the PPG because it influences two aspects of the pulse
wave: the shape of the pulse wave and the speed of its propagation from the heart to the periphery. A plethora of
approaches to assess BP from the PPG have been proposed, mostly exploiting one or both of these phenomena.
Firstly, BP can be assessed from the shape of the pulse wave and its derivatives [100] (see [101], [102] for lists
of PPG features). Secondly, BP can be assessed from the pulse arrival time measured between a marker of cardiac
contraction (such as the QRS complex of the ECG) and the subsequent PPG pulse arrival [11], [103]. Thirdly,
BP can be assessed from the pulse transit time between PPG pulse waves measured closer to, and further away
from, the heart [104]. Machine learning has been widely used to develop techniques to estimate BP from PPG-
based measurement [105]. It is challenging to assess BP from the PPG because: changes in BP may have only a
relatively small effect on the PPG; the nature of the effect of BP on the PPG is partially subject-specific; and, other
cardiovascular properties (such as arterial stiffness) can cause similar changes to the PPG. Consequently, PPG-based
devices may require calibration with reference BP measurements in order to monitor BP (see the Samsung Galaxy
Watch3). In addition, manufacturers may decide to only assess changes in BP (or the direction of BP changes),
rather than absolute values [106].

3.6. Sleep assessment
Wearables are extensively used for sleep assessment, based primarily on monitoring activity levels (actigraphy)

[107]. PPG-based wearables which also include an accelerometer provide opportunity to enhance sleep assessment

https://creativecommons.org/licenses/by/3.0/
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through the inclusion of HR and PRV analysis. Indeed, consumer PPG-based wearables have been found to identify
periods of wake and sleep with a performance similar to, or better than, research-grade actigraphy devices [107],
[108]. Error rates vary considerably between PPG-based wearables [109]. Further research is required to determine
whether sleep stages can be accurately classified using PPG-based wearables [110].

3.7. Energy expenditure (EE)
Energy expenditure (EE) is now measured by some PPG-based wearables. EE primarily consists of three com-

ponents [111], [112]: basal (i.e. baseline) EE, the thermic effect of feeding, and energy expended from physical
activity. The most important component to monitor is that relating to physical activity, since it accounts for the most
variable portion. On the other hand, basal EE can be predicted from age, sex and height [112], and the thermic
effect of feeding is relatively small. Energy expended from physical activity can be estimated from HR, which
indicates the intensity of exercise [113], [114]. This is based on the assumption of a linear relationship between HR
and oxygen consumption, which can be considered consistent for an individual performing submaximal activities
[115]. However, the true relationship varies between individuals and between exercise types. Furthermore, care must
be taken not to include periods of rest and light activity in calculations of energy expended from physical activity,
since the relationship does not hold in these cases. The accuracy of EE estimates has been questioned [116], [117],
and none of the wearables included in a recent systematic review were found to accurately estimate EE [78].

3.8. Maximal oxygen consumption
The maximum rate of oxygen consumption during exercise (denoted V̇O2max) is an important marker of car-

diorespiratory fitness [118]. Broadly, two approaches are taken to estimate V̇O2max. The first consists of estimating
V̇O2max from an individual’s resting HR and maximum HR (the maximum possible HR for an individual, which
can be estimated as a function of gender and age [119]). The second approach is based on the relationships between
oxygen consumption and running speed, and between running speed and HR [120]. HR and speed measurements
are obtained during exercise, and used to derive a relationship between HR and running speed for the individual.
This relationship is then extrapolated to calculate a maximal running speed corresponding to the maximal predicted
HR [120]. Finally, V̇O2max is estimated from the maximal running speed [120]. Devices such as Fitbits estimate
V̇O2max from HR, speed (obtained via GPS), resting HR, and demographics [118]. Studies of the accuracy of
V̇O2max estimates provided by PPG-based wearables have reported mixed results [116], [118], [121], [122]. In the
future it will be important to assess whether this approach has utility in subjects who do not or cannot run [118].

3.9. Pulse rate variability (PRV)
PRV is the variability in inter-beat-intervals assessed from the PPG. PRV has several potential applications,

including assessing mental stress levels, identifying sleep stages, and assessing cardiovascular health [123]. PRV
is highly related to HR variability (HRV), the variability in inter-beat-intervals assessed from the ECG (the gold
standard). However, PRV and HRV are not equivalent because they are caused by different physiological mechanisms
[124]. A range of summary statistics can be used to quantify PRV and HRV from inter-beat-intervals [125]. The level
of agreement between the PRV and HRV statistics is dependent on several technical factors. Firstly, PPG sampling
frequency affects PRV measures [49], [126]. Secondly, interpolation of the PPG to higher sampling frequencies
can improve agreement [126]. Thirdly, PRV has been found to agree more closely with HRV when calculated from
the timings of particular fiducial points on the PPG (namely the middle-amplitude point, the apex point of the first
derivative, and the tangent intersection point) [127]. In addition, agreement between PRV and HRV is dependent on
several physiological factors [123]. Agreement tends to be higher when measurements are performed at rest than
during exercise [124], [128]. In the future it will be important to determine the minimum duration of PPG signal
required to accurately assess PRV so that it can be assessed during periods of low activity during daily living [129].

3.10. Arterial stiffness
Some PPG-based devices now offer an assessment of arterial stiffness (see Biostrap Evo’s Arterial Elasticity

and Peripheral Elasticity metrics). Such measurements are based on analysis of the shape of the PPG pulse wave.
Several pulse wave features have been identified as potentially indicative of arterial stiffness [102], [130], based on
similar physiological mechanisms to those exploited when assessing BP from a single pulse wave. Gold standard
measurements of arterial stiffness are associated with cardiovascular events and all-cause mortality [131], as are
features of the PPG pulse wave [132]. However, it is not yet clear how accurately arterial properties can be assessed
from wearable PPG signals, and whether such measurements are indicative of cardiovascular risk.
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4. COMMERCIALLY AVAILABLE DEVICES

This Section provides an overview of the wide range of commercially available PPG-based wearables. Many
wearables are used alongside smartphone apps, which enable data storage, visualisation and analysis. Readers
interested in apps for PPG-based wearables are referred to [133].

The consumer market for PPG-based wearables has exploded in recent years. Smartwatches, wristbands, smart
rings, and ear buds are all widely available. Although not all consumer wearables use photoplethysmography,
those which monitor HR invariably use photoplethysmography to do so, such as those shown in Fig. 7. The
functionality of selected PPG-based wearables is summarised in Table I. This table provides an overview of the
field, demonstrating the range of form factors taken by wearables, and parameters estimated by them. The list is by
no means comprehensive: devices are shown from selected wearable manufacturers, and only one device is listed
per manufacturer. Furthermore, the functionality of devices can be enhanced with software updates, or through
use with additional apps. The interested reader is referred to [4], [134] for details of additional consumer devices.
Devices which are not available to consumers are beyond the scope of this review (see for instance the CE-marked
SOMNOtouch NIBP device [135] and the FDA-approved Biobeat watch [136]).

Fig. 7. PPG-based wearable devices: Examples of wrist-worn devices which measure the PPG signal. (clockwise from top left) The
Max-Health-Band, Oura Ring, Amazfit Bip, Samsung Gear Galaxy S2, and Apple Watch.

Sources: (clockwise from top left) [13] under CC BY 4.0; cropped from image by Marco Verch (CC BY 2.0) - link; cropped image from
[137] under CC BY 4.0; cropped from image by GEEK KAZU (CC BY 2.0) - link; cropped from image by Pixels (Pixabay License) -
link; cropped from image by Luke Chesser (CC0 1.0) - link.

4.1. Form factors
PPG-based wearables take a variety of form factors and can be attached to different parts of the body. As shown

in Table I, the vast majority of PPG-based wearables are worn on the wrist, either as a watch (with a larger screen),
a band (with a smaller screen), or a strap (without a screen). Other form factors have emerged more recently, such
as finger rings, ear buds and ear wrap arounds, ankle socks, and arm sleeves. In addition, the Polar OH1 sensor is
a disk-shaped sensor which provides the user with flexibility to mount it anywhere on the skin, and comes with an
armband and swim goggle attachment. Potential users have expressed a preference for wrist-worn devices over other
form factors [138]. Nonetheless, there are advantages to other measurement sites (see Section II-A), and use cases

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/2.0/
https://flickr.com/photos/160866001@N07/32586534637
https://creativecommons.org/licenses/by/4.0/
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https://www.flickr.com/photos/152342724@N04/36729615770/
https://pixabay.com/service/license/
https://pixabay.com/photos/gear-samsung-galaxy-gear-s2-gears2-1283954/
https://creativecommons.org/publicdomain/zero/1.0
https://commons.wikimedia.org/wiki/File:Apple_Watch_user_(Unsplash).jpg
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TABLE I
THE FORM FACTORS AND FUNCTIONALITY OF SELECTED PHOTOPLETHYSMOGRAPHY-BASED WEARABLES.

Definitions: accel - accelerometry; HR - heart rate; irreg. - irregular pulse detection; SpO2 - arterial oxygen saturation; RR -
respiratory rate; BP - blood pressure; V̇O2max - maximum rate of oxygen consumption; ECG - electrocardiogram; temp -

temperature.
Source: Adapted from [4], [13] under CC BY 4.0.

Wearable Form factor
Parameters from PPG Params from PPG & accel. Others

HR irreg. SpO2 RR BP sleep calories V̇O2max ECG steps elevation temp

Apple Watch Series 6 wrist watch X X X × × X X X X X X ×
Withings Scanwatch wrist watch X X X X × X X X X X X ×
Samsung Galaxy Watch3 wrist watch X × X × X X X ? X X × ×
Fitbit Sense wrist watch X × X X × X X X X X X X

Garmin Forerunner 945 wrist watch X × X X × X X X × X X X

Amazfit GTR 2e wrist watch X X X × × X X × × X X X

Huawei Watch GT2 Pro (ECG) wrist watch X × X × × X X X X X X X

Fossil Gen 5 wrist watch X X × × × X X X × X X ×
WHOOP Strap 3.0 wrist strap X × × X × X X × × X × ×
Ava Bracelet wrist strap X × × X × X × × × × × X

Biostrap Evo wrist band X × X X × X X × × X × ×
Oura Ring finger ring X × × X × X X × × X × X

Jabra Elite Sport ear buds X × × × × × X X × × × ×
Bodytrak ear buds + case X × × × × × X X × × × X

Cosinuss Two ear wrap around X × X × × × × × × × × X

Owlet Smart Sock Baby Monitor 3 ankle sock X × X × × X × × × × × ×
AIO Sleeve 2.0 arm sleeve X × X × × X X × X X × ×
Polar OH1 Sensor armband OR goggles X × × × × × × X × × × ×

in which other form factors are advantageous. For instance: a sock may be more suitable for monitoring babies
(see Owlet Smart Sock); ear buds may provide more reliable fall detection than devices attached at peripheral sites
such as the wrist (see Bodytrak); and, an arm sleeve can incorporate an ECG electrode on the chest (see AIO
Sleeve), which is not possible with many other form factors. Additional form factors have been used in devices
sold to industry rather than consumers directly: the Equivital eq02+ LifeMonitor takes the form of a chest belt
with shoulder straps, and the Spire Health Tag attaches to clothing. Other form factors have been investigated in
research too, such as incorporating PPG sensors into arm bands and glasses [22], [31]. Whilst the wrist form factor
dominates the market at the moment, the finger ring may become increasingly popular as it shares many of the
same characteristics. Other form factors are likely to be more suitable for specific use cases.

4.2. Functionality

Wearables estimate several physiological parameters from the PPG signal. The PPG is widely used for HR
monitoring, as shown by HR being provided for all of the devices in Table I. Some devices also capture the
ECG either on demand or continuously, from which HR can be obtained. Since PPG sensors can provide frequent
or continuous monitoring without the need for additional electrodes, it is likely that photoplethysmography will
remain the dominant method for HR monitoring in consumer wearables. The remaining PPG-derived parameters
are less widely calculated, and the technology for estimating these parameters is still in the development phase
in many cases. Some devices use the PPG to identify irregular heart beats which may indicate arrhythmias. This
approach has been shown to have utility in the Apple Heart Study [57], and is likely to become more widely used
as shown by the Huawei Heart Study [139], FitBit Heart Study [140], and work on detecting atrial fibrillation
by other manufacturers [141]. SpO2 has recently become more widely measured, and is now offered by several
wrist-worn devices. SpO2 measurement has been facilitated by devices incorporating LEDs of multiple wavelengths
(such as the Apple Watch Series 6 using red, green and infrared light). RR and BP are more difficult to estimate
reliably from PPG signals, and are not yet widely offered. Approaches to overcome the challenges of monitoring
these parameters include: monitoring RR at night when there is likely to be less motion artifact (see the Withings
Smartscan’s Respiratory Scan function) [8], [142]; and calibrating BP estimates with a traditional cuff measurement

https://creativecommons.org/licenses/by/4.0/
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(see the Samsung Health Monitor App). In the future PPG-based wearables might routinely measure many or all
of the mentioned parameters, in a similar way to the current widespread measurements of HR.

Wearables also estimate some parameters through analysis of both the PPG and other signals. Sleep can be
identified and assessed using both activity levels from accelerometry signals, and HRs from PPG signals. Indeed,
since most wearables incorporate an accelerometer, most of those listed in Table I assess sleep. Similarly, most of
the wearables assessed calories burnt, which can be estimated from activity levels with (in some cases) the additional
use of HRs. V̇O2max can be estimated from HRs acquired during both rest and exercise [118], and several of the
listed wearables do estimate V̇O2max.

Wearables also provide further parameters derived from other signals. The recent addition of an ECG sensor to
some wrist-worn devices provides opportunity to complement PPG-based assessments with ECG signals which could
potentially be used for diagnostics. For instance, on detecting an irregular heart rhythm from a PPG signal, the user
could be prompted to take a short ECG recording which could then be clinically reviewed. The use of accelerometry
to identify exercise, and barometers to identify stair climbing [143], provides complementary information which
can be used in conjunction with PPG-derived HRs to assess fitness. Finally, several wearables measure temperature
which, if closely associated with body temperature, may be a helpful marker of illness [144]. When measuring
temperature, the ear bud form factor may be advantageous as temperature measured in the ear may agree more
closely with core temperature than measurements at other measurement sites.

4.3. Marketing models
Several different marketing models have been used to commercialise wearables. In most cases the consumer

pays for the device upfront, and any necessary apps are provided by the manufacturer without charge (for instance,
Withings’ HealthMate app). An alternative approach is to use subscription charges, and provide the wearable to
subscribers (see WHOOP membership). In addition, a hybrid approach can be used in which additional data analytics
and visualisation functionality is enabled with a subscription (see Biostrap’s Sleep Lab).

4.4. Batteries
The way in which the battery is incorporated into the device affects its usage. Most PPG-based wearables contain

built-in batteries and so must be removed from the body for charging, resulting in periods of downtime. For instance,
the Apple Watch is charged using a magnetic charging cable, the Oura Ring is charged using a dock, and the Fitbit
Charge is charged using a cable with clip attachment. In contrast, the Equivital eq02+ LifeMonitor and WHOOP
Strap have interchangeable battery packs, virtually eliminating downtime due to battery constraints.
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5. APPLICATIONS

A wide range of applications have been proposed for PPG-based wearables. These range from clinical applications
to fitness and lifestyle monitoring. The reader is referred to [7] for a discussion of several clinical applications. A
few additional applications are now discussed.

5.1. Menstrual cycle monitoring
The ability to monitor the menstrual cycle and predict ovulation is valuable for family planning. The data acquired

by wearables could be used for this purpose, particularly when measured whilst asleep. Temperature measured at
the finger using an Oura Ring has been found to be useful for menstrual cycle monitoring [145], and temperature
measured in the ear canal has been found to be useful for predicting ovulation [146]. In addition, PPG-derived
parameters including HR, PRV, RR and skin perfusion have all been found to be useful for predicting the fertility
window [147], [148]. Potentially, such parameters could be used in combination to track the menstrual cycle.

5.2. Identifying orthostatic hypotension
Orthostatic hypotension is a prolonged drop in BP upon standing of at least 20 mmHg systolic BP, or 10 mmHg

diastolic BP [149]. It is caused by a dysfunction of the autonomic nervous system, which would normally compensate
for the reduction in BP when standing up due to gravity causing blood to pool in the lower body. In older adults,
orthostatic hypotension is associated with an increased risk of falls [150], which in turn result in increased morbidity,
mortality and healthcare costs [151]. Methods to identify orthostatic hypotension in daily life could potentially help
prevent falls. It has been proposed that by estimating BP from the PPG, one could identify drops in BP indicative
of orthostatic hypotension [152]. Accelerometry and gyroscope measurements from wearables could also be used
to identify when a user stands following a prolonged period of lying down or sitting, which could be combined
with PPG-based detection of drops in BP to identify possible orthostatic hypotension for further assessment.

5.3. Seizure detection in epilepsy
Epilepsy is one of the most common neurological disorders, affecting almost 1% of the population worldwide

[153]. Patients are often required to keep a seizure diary outside the hospital in order to follow-up the disease
and evaluate treatment. Reliable seizure detection might help optimise antiepileptic treatment, which could in turn
reduce the risk of sudden unexpected death in epilepsy. Manual seizure diaries are unfortunately not highly reliable,
thus there is a potential role for automated, preferably wearable, seizure detection devices. Some types of epilepsy
affect the autonomic nervous system (e.g. temporal lobe epilepsy), and in turn the cardiovascular system. Temporal
lobe seizures are often accompanied with a strong increase in HR, providing opportunity to detect this type of
epilepsy through PPG-based HR monitoring [154], [155]. Another study has investigated cardiorespiratory effects
of epilepsy by monitoring SpO2 and found that 63%-73% of generalized convulsions and 20%-28% of focal seizures
can be detected by using SpO2 thresholds of 80%-86% [156]. Relatively little research has been conducted to date
on using PPG-based wearables to detect seizures, although a planned multicenter study holds promise for providing
new insights into the utility of PPG-based wearables for this application [157].

5.4. Anaesthesia and pain monitoring
Monitoring of painful stimulation is routinely used to assess the adequacy of analgesic medication for pain

control during anaesthesia [158]. Pain causes sympathetic responses in the autonomic nervous system, and these
are associated with morphological changes in the PPG [159]. Consequently, PPG-based devices may have utility
for monitoring analgesia. The PPG-derived Surgical Plethysmography Index (SPI), calculated from the pulse wave
amplitude and duration, has been proposed as an approach to assess analgesic state [160]. The SPI was integrated
into the Aisys® Carestation device (GE Healthcare, Finland). The SPI does not appear to be valid in children [161],
which may be due to both differences in blood vessel distensibility and baseline HRs in children versus adults. The
autonomic nervous system state (ANSS) metric was introduced in [162], and is calculated from the same features
of the PPG pulse wave as for the SPI. Additional approaches have been proposed in [163], which assessed the
performance of a plethora of PPG pulse wave indices to assess postoperative pain, and [164], which used deep
learning to classify pain level. Further details of methods for analgesia monitoring are provided in [158], including
methods based on HRV and wavelet cardiorespiratory coherence [165], which could be suitable for implementation
in PPG-based devices.
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5.5. Chronic kidney disease monitoring
Chronic kidney disease (CKD) has a high global prevalence of 11 to 13% [166], [167], and advanced CKD may

require frequent haemodialysis to replace lost kidney function. Consequently, interventions to delay the progression
of CKD and improve outcomes are valuable. Cardiovascular diseases (CVDs) such as coronary artery disease (CAD),
congestive heart failure, arrhythmias, and sudden cardiac death are the main causes of morbidity and mortality in
patients with CKD [168]. These CVD pathologies impact haemodynamics and so could potentially be detected and
monitored by PPG-based devices. In [169], the authors demonstrated the potential of dual wavelength (infrared
and green) reflectance photoplethysmography to identify CAD in CKD patients. Differences were observed in the
upslopes and downslopes of PPG pulse waves between CKD patients with and without CAD. In the future, such
features could be adjusted to account for changes which occur with age. Specifically, in haemodialysis patients, an
arteriovenous (AV) fistula in the arm significantly increases the steepness in blood volume change during systole
compared with the arm without AV fistula. PPG-based monitoring may also be useful for detecting arrhythmias such
as bradycardia and tachycardia, which are common in haemodialysis patients [170]. PPG-based monitoring might
also be useful for preventing intradialytic hypotension [171] and for hypotension management [172], [173]. A recent
review [174] identified only a few studies investigating the use of PPG-based monitoring in haemodialysis patients;
however, they concluded that wearable health devices will enter clinical practice in the near future, including for
haemodialysis patients.

5.6. Biometric authentication
There is growing interest in new approaches to user authentication. PPG-based wearables provide opportunity to

authenticate users based on analysis of their PPG signal, since PPG signals differ from one user to the next. Broadly,
two approaches have been taken to identify an individual from their PPG signal: classification algorithms based
on either pulse wave features [175]–[177] or deep learning frameworks [178]–[180]. The PPG can be transformed
into the angle domain before feature extraction to reduce intra-subject variability [181], [182]. Time-frequency
analysis has also been used to extract features without the need to identify individual pulse waves [183]. The main
challenge is to reliably classify users in the presence of intra-individual variability. Consequently, it is helpful to
train a system using data from one recording session, and assess its performance on data from the same individuals
in a separate recording session [180]. Performance can also be assessed during situations which affect pulse wave
morphology and variability, such as changes in emotions [181] and activities of daily living [176], [182]. PPG-based
authentication could be used to provide access to confidential and sensitive information over the internet [180], or
could act as a pre-cursor to existing authentication systems such as fingerprint scanning [179].

5.7. Health insurance
Some insurance providers are now offering rewards or discounts to policy holders who use a PPG-based wearable

to track their exercise [184], [185]. In doing so, insurance providers can promote healthier lifestyles [186], personalise
insurance premiums according to individual risk, and create personalised products based on users’ data [187]. Indeed,
many of the largest insurance companies in the USA offer self-tracking health and life insurance schemes [188].
However, concerns have been raised that the use of wearables in health insurance is not in keeping with the principles
of solidarity, fairness and equality on which collective insurance schemes are based [188].
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6. CONCLUSION AND FUTURE WORK

The growing use of PPG-based wearables provides opportunity to monitor health and fitness in daily life. The
potential utility of wearables is directly linked to their design, with several form factors used in commercial devices.
Several physiological parameters can be estimated from the PPG signal, which if incorporated in wearable systems,
could provide a wealth of information on the cardiovascular, respiratory and autonomic nervous systems. Additional
parameters and features have been incorporated into commercially available wearables over time, expanding their
functionality and potential utility. Wearables may now, or in the future, have utility in a wide range of applications in
clinical, health and fitness settings. However, much further work is required to realise the full potential of PPG-based
wearables.

6.1. Areas for future work
Key areas for future work concerning PPG-based wearables include:
1) Identifying use cases for wearables in clinical practice, and assessing their cost-effectiveness for these use

cases [189]. The detection of possible atrial fibrillation using PPG-based wearables is a promising initial
use case, since the potential utility of devices for this purpose has been demonstrated [57], and there is an
established treatment strategy (anticoagulation to reduce risk of stroke).

2) Assessing whether the use of wearables for behaviour change, such as prompting increased physical activity,
is associated with improved health and wellbeing outcomes.

3) Harnessing the wealth of data provided by wearables for large-scale research [190], as achieved in the Apple
Heart Study [57], Huawei Heart Study [139], and studies using data from Fitbit devices [191], [192].

4) Thorough evaluation of the limitations of wearables to ensure they are not used outside of their capabilities
[193].

5) Ensuring that any clinical benefits of wearables are made accessible to all, noting the vast geographical
discrepancies in the current use of wearables [1].
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[28] M. Masè, A. Micarelli, and G. Strapazzon, “Hearables: New perspectives and pitfalls of in-ear devices for physiological monitoring. A
scoping review,” Frontiers in Physiology, vol. 11, p. 568886, 2020. https://doi.org/10.3389/fphys.2020.568886

[29] K. Budidha and P. A. Kyriacou, “The human ear canal: Investigation of its suitability for monitoring photoplethysmographs and arterial
oxygen saturation,” Physiological Measurement, vol. 35, no. 2, pp. 111–128, 2014. https://doi.org/10.1088/0967-3334/35/2/111

[30] D. Marzorati et al., “Chest wearable apparatus for cuffless continuous blood pressure measurements based on PPG and PCG signals,”
IEEE Access, vol. 8, no. 1, pp. 55 424–55 437, 2020. https://doi.org/10.1109/ACCESS.2020.2981300

[31] Y. Zheng et al., “A clip-free eyeglasses-based wearable monitoring device for measuring photoplethysmograhic signals,” in Proc. IEEE
EMBS. IEEE, 2012, pp. 5022–5025. https://doi.org/10.1109/EMBC.2012.6347121

https://s3.amazonaws.com/media.mediapost.com/uploads/CiscoForecast.pdf
https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-forecasts-global-spending-on-wearable-devices-to-total-81-5-billion-in-2021
https://www.gartner.com/en/newsroom/press-releases/2021-01-11-gartner-forecasts-global-spending-on-wearable-devices-to-total-81-5-billion-in-2021
https://doi.org/10.1109/RBME.2020.2992838
https://doi.org/10.3389/fdgth.2020.00008
https://doi.org/10.1038/s41587-021-00816-8
https://doi.org/10.1109/EMBC.2014.6944419
https://doi.org/10.3390/ecsa-7-08233
https://doi.org/10.5281/zenodo.3268500
https://www.ipem.ac.uk/Portals/0/SCOPE SPRING21 FULL LRC low res.pdf#page=50
https://doi.org/10.1038/sj.jhh.1001478
https://doi.org/10.3389/fphys.2019.00198
https://doi.org/10.5281/zenodo.798234
https://doi.org/10.1088/1361-6579/aa670e
https://doi.org/10.5281/zenodo.4601547
https://doi.org/10.1088/1361-6579/ab840a
https://doi.org/10.2174/157340312801215782
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1109/ACCESS.2019.2939798
https://doi.org/10.1088/1361-6579/aac7ac
https://doi.org/10.1080/02640414.2020.1767348
https://doi.org/10.1186/s12938-017-0317-z
https://doi.org/10.1145/3329189.3329215
https://doi.org/10.1007/s10916-010-9505-0
https://doi.org/10.1109/TITB.2010.2042607
https://doi.org/10.3390/bios10040034
https://doi.org/10.1002/ecj.12019
https://doi.org/10.3389/fphys.2020.568886
https://doi.org/10.1088/0967-3334/35/2/111
https://doi.org/10.1109/ACCESS.2020.2981300
https://doi.org/10.1109/EMBC.2012.6347121


P.H. CHARLTON AND V. MAROZAS: WEARABLE PHOTOPLETHYSMOGRAPHY DEVICES 19

[32] F. Wahl, M. Freund, and O. Amft, “WISEglass: Smart eyeglasses recognising context,” BodyNets International Conference on Body
Area Networks, 2015. https://doi.org/10.4108/eai.28-9-2015.2261470

[33] B. H. Olstad and C. Zinner, “Validation of the Polar OH1 and M600 optical heart rate sensors during front crawl swim training,” PLOS
ONE, vol. 15, no. 4, p. e0231522, 2020. https://doi.org/10.1371/journal.pone.0231522

[34] K. Matsumura, S. Toda, and Y. Kato, “RGB and near-infrared light reflectance/transmittance photoplethysmography for measuring heart
rate during motion,” IEEE Access, vol. 8, pp. 80 233–80 242, 2020. https://doi.org/10.1109/ACCESS.2020.2990438

[35] M. Elgendi et al., “The use of photoplethysmography for assessing hypertension,” npj Digital Medicine, vol. 2, p. 60, 2019.
https://doi.org/10.1038/s41746-019-0136-7

[36] R. R. Anderson and J. A. Parrish, “The optics of human skin,” Journal of Investigative Dermatology, vol. 77, no. 1, pp. 13–19, 1981.
https://doi.org/10.1111/1523-1747.ep12479191

[37] A. N. Bashkatov et al., “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000
nm,” Journal of Physics D: Applied Physics, vol. 38, no. 15, pp. 2543–2555, 2005. https://doi.org/10.1088/0022-3727/38/15/004

[38] B. A. Fallow, T. Tarumi, and H. Tanaka, “Influence of skin type and wavelength on light wave reflectance,” Journal of Clinical
Monitoring and Computing, vol. 27, no. 3, pp. 313–317, 2013. https://doi.org/10.1007/s10877-013-9436-7

[39] Y. Maeda, M. Sekine, and T. Tamura, “The advantages of wearable green reflected photoplethysmography,” Journal of Medical
Systems, vol. 35, no. 5, pp. 829–834, 2011. https://doi.org/10.1007/s10916-010-9506-z

[40] Apple Support, “Monitor your heart rate with Apple Watch,” 2021. https://support.apple.com/en-us/HT204666
[41] J. Liu et al., “Multi-wavelength photoplethysmography enabling continuous blood pressure measurement with compact wearable

electronics,” IEEE Transactions on Biomedical Engineering, vol. 66, no. 6, pp. 1514–1525, 2019.
https://doi.org/10.1109/TBME.2018.2874957

[42] B. Bent et al., “Investigating sources of inaccuracy in wearable optical heart rate sensors,” npj Digital Medicine, vol. 3, no. 1, pp. 1–9,
2020. https://doi.org/10.1038/s41746-020-0226-6
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